HOMEWORK 9

MATH 430, SPRING 2014

Problem 1. Prove the Chinese Remainder Theorem

Recall that in class we defined the formulas $\phi_{\text {exp }}$ and $\phi_{\text {prime }}^{*}(x, n)$, so that
(1) $\mathfrak{A} \models \phi_{\text {exp }}(e, n, k)$ iff $e^{n}=k$,
(2) $\mathfrak{A} \models \phi_{\text {prime }}^{*}(x, n)$ iff p is the n-th prime i.e. $p_{n}=p$.

Problem 2. Show that $\phi_{\text {exp }}$ is Δ_{1} by writing a formula in Π_{1} form and proving that it is equivalent to $\phi_{\text {exp }}$.
Problem 3. Show that $\phi_{\text {prime }}^{*}(x, n)$ is Δ_{1} by writing a formula in Π_{1} form and proving that it is equivalent to $\phi_{\text {prime }}^{*}(x, n)$.
Problem 4. Show that any model \mathfrak{B} of PA is an end-extension of the standard model $\mathfrak{A}:=(\mathbb{N}, 0,<, S,+, \times)$. I.e. show that there is a one-to-one function $h:|\mathfrak{A}| \rightarrow|\mathfrak{B}|$, such that:
(1) h is an isomorphism between \mathfrak{A} and range(h) (for the definition see the last problem of Hwk 8) and
(2) for every $b, c \in|\mathfrak{B}|$, if $b<_{\mathfrak{B}} c$ and $c \in \operatorname{range}(h)$, then $b \in \operatorname{range}(h)$.

