HOMEWORK 9 MATH 430, SPRING 2014

Problem 1. Prove the Chinese Remainder Theorem

Recall that in class we defined the formulas ϕ_{exp} and $\phi^*_{prime}(x, n)$, so that

- (1) $\mathfrak{A} \models \phi_{exp}(e, n, k)$ iff $e^n = k$,
- (2) $\mathfrak{A} \models \phi^*_{prime}(x, n)$ iff p is the n-th prime i.e. $p_n = p$.

Problem 2. Show that ϕ_{exp} is Δ_1 by writing a formula in Π_1 form and proving that it is equivalent to ϕ_{exp} .

Problem 3. Show that $\phi^*_{prime}(x,n)$ is Δ_1 by writing a formula in Π_1 form and proving that it is equivalent to $\phi^*_{prime}(x,n)$.

Problem 4. Show that any model \mathfrak{B} of PA is an end-extension of the standard model $\mathfrak{A} := (\mathbb{N}, 0, <, S, +, \times)$. I.e. show that there is a one-to-one function $h : |\mathfrak{A}| \to |\mathfrak{B}|$, such that:

- h is an isomorphism between A and range(h) (for the definition see the last problem of Hwk 8) and
- (2) for every $b, c \in |\mathfrak{B}|$, if $b <_{\mathfrak{B}} c$ and $c \in range(h)$, then $b \in range(h)$.